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We have investigated a 12-parameter global affine mo-

tion model for registration of different respiratory gates from

Abstract . bd :
N ) ) ) a doubly gated cardiac PET sequence. In addition to the six

The heart position shifts considerably due to motion 3§arameters of rotation and translation, the affine model al-
sociated with the respiratory cycle, and this motion can dgws for three scale and three skew parameters. To obtain
grade the image quality of cardiac-gated PET studies. Gfigre robust estimates of motion from a sequence of noisy
method to combat this motion-induced blur is a respiratoliynages, a four-dimensional (4D) registration model was de-
gated acquisition followed by recombination of registerafised that encouraged smoothly varying motion between
image volumes using a rigid-body motion assumption; hoydjacent time frames. Registration parameters were itera-
ever, non-rigid deformation of the heart from respiratofely calculated using a least squares voxel difference cost

motion may reduce the effectiveness of this procedure.  function combined with a penalty from a prediction affine

We have investigated a 12-parameter global affine motion model. The prediction model was computed assum-
tion model for registration of different respiratory gates in dAg constant motion velocity between frames. After registra-
end-diastolic cardiac PET sequence. To obtain robust e#@in, principal extension ratios were calculated to indicate the
mates of motion, a 4D registration model was devised tigxtent of non-rigid motion. In the data from ten subjects,
encouraged smoothly varying motion between adjacent ré§fetch ratios of over 5% were common, indicating that the
piratory time frames. Registration parameters were itefdgid body motion model may contribute to artifacts when
tively calculated using a cost function that combined a le&9mbining registered datasets. Using these stretch ratios, a
squares voxel difference measure with a penalty obtairk&fdiac phantom was used to investigate the impact of im-
from a prediction prior. The prior was calculated from adj@roperly aligning a non-rigidly deforming body with a rigid-
cent time frames assuming constant velocity and an affipedy motion model.
model. After registration, the principal extension ratios were
calculated to measure the degree of non-rigid motion. In data . METHODS
from ten subjects, extension ratios of over 5% were common, )
indicating that an affine model may provide better registra- I
tions and in turn, better motion-corrected composite volun%‘s Data Acquisition
than could a technique restricted to the 6-parameter rigid List mode cardiac PET data were acquired from ten sub-
body assumption. jects using the CTI/Siemens ECAT EXACT HR scanner.

Data were acquired fromfF-fluorodeoxyglucose emission
. INTRODUCTION studies after the_ isotope had cleared the bIooq pool. The data
were retrospectively gated for both the respiratory and car-

Cardiac motion due to the respiratory cycle has now begiac cycle to obtain a 2D array of reconstructed volumes.
noted by a number of researchers [1, 2]. For techniques lgae axis of the array represented the heart at eight different
positron emission tomography (PET), which require mug@spiratory positions; the other axis represented two different
longer than a single breath hold to acquire, this motion cghases of the cardiac cycle.
degrade the image quality of cardiac-gated studies. Respira-

tory-gqted acquisition .followed by recombinatioln of r.egis(éking short, 10-msec time segments of the emission list
tered image volumes is one method of combating this Moy’ ata stream and computing the superior-inferior com-

tion-induced blur. Our prior efforts in respiratory motio$) nent of the sinogram center of mass (COM). Because the
compensation have .assumed a_rigid-body motion MOG&Lonstructed activity distributions were relatively stable in
while registering the image data [3]. Though the resplratogg

motion can be orimarily described as a rotation and transiine with the heart as the principal feature in these cases, the
tion, it is knowr? that tﬁ/is model is an approximation, sin M can be used as an indicator of heart motion [6]. This
the heart deforms somewhat as it is being pushed and pllﬁ’n varying waveform could therefore be used as a gating
a
W

Monitoring of the respiratory cycle was carried out by

by the diaphragm and other connected tissue. For exam al to divide the list mode stream into different storage
measurements on dogs using high resolutibn gated tions based on the respiratory position of the heart. Gat-
showed that total heart volume changed by an average levels were selected to arrive at reconstructed volumes
12% during inspiration, a fact that can only be explained % eight approximately equal respiratory motion compo-
a non-rigid deformati(;n [4]. Similar shape changes ha nts along the superior-inferior direction (long axis of the
a non-figid deformat subje.cts Using echocardiography éianner). In gating for cardiac contractile motion, one phase

; . ; . ptured approximately the state of end-diastole, based on
This deformation of the heart from respiratory motion m Ye time segments between 0-200 msec and 5004+ msec with
reduce the effectiveness of a motion compensation proce%é

I ; .
that assumes only rigid motion. fpect to the R-wave. The other cardiac phase captured pri-

marily the heart as it was contracting through systole. Note



that the image volumes analyzed in this work represeiyt Table 1. Summary of Registration Parameters

the end-diastole portion of the data. Motion compensation|ofD | Transla- A, Ay A, AAVA,
image volumes obtained from different cardiac phases fe- tion
quires a more complex deformable motion model [7], and (mm)
will not be discussed further in this paper. 1 111.90 1005 0999 1.05f 1.062
2 ]16.32 1015 0.993 1.014 1.022
B. Registration Technique 3 [12.59 1025 0953 1.076 1.051
. . 4 ]13.95 1023 1.033 1.040 1.098
Reconstructed image volumes were spatially smootheg—15& 1031 1044 1035 1.113
and segmented using a simple percentile-based thresholdigg—Tg77 1006 1.024 1.030 1.061
operation so that the left ventricle was the principal feature[if—11.97 1013 1.008 1.068 1.085
all image volumes. An initial registration transform was old-g— [1.028 0999 1.003 0992 0.993
tained between all volumes in the sequence and the referénge [25.42 1246 1.031 1.208 1.546
volume using a 12-parameter affine motion model and a cp3D [16.39 1026 1.003 1.063 1.094

function calculating the least squares cost difference betweenTo enforce temporal continuity, we add a cost function
voxels [8]. For all sequences, end-inspiration was chosencasponent that penalizes departures from the prediction ma-
the reference volume. trix. This is expressed formally as the squared Euclidean

Because tomograph events are distributed into many dIfrm of the prediction and current estimated transformation
ferent sinograms in a doubly gated study, the resulting recéffference:
structed volumes are often quite noisy due to insufficient
statistics. This characteristic makes a registration algorithm
based only on two volumes vulnerable to motion estimatio . . .
errors. Fortunately, in the case of a 4D dataset like these yérb_erewp is a constant used to vary the weight of the predic-
piratory gates, we can make use of ¢heriori knowledge tion term with respect to the voxel difference cost term. After
that the motion from one gate to another is likely to followtae initial estimates of motion are obtained using information
smooth progression. In fact, since the gating signal bound®m two adjacent volumes, the prediction cost function is
ries were chose such that the COM intervals were approxicluded and a 4D iterative estimation procedure begins. The
mately equal, we can assume that the motion between agjs@diction portion of the cost function encourages a smooth
cent time frames must also be approximately equal. Thepgogression of motion between respiratory frames, and
fore, we add a smoothness constraint in time as follows. makes the motion estimation algorithm more robust when
opised with low-count reconstructed data.
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Ep(MO,j+1’MO,j+1) :Wp|MO,j+1 - Mo,j+1

Numbering the volumes from 0 to 7, and selecting v
ume 0 as the reference, the total transformation from any one

time frame to the reference volume can be expressed as a I1l. RESULTS
4x4 homogeneous coordinate transformation matrix:
@y by C dyO A. Registrations of Human Datasets
B %m fo Qo hm% Once motion parameters have been estimated, an indica-
Mo, = Oy jo ki 1D tion of the departure from a rigid-body model required to
o don o o A register the image data may be obtained by examining the
00 0 0 1( principal extension ratios. These indicate the stretching fac-

Because the motion between adjacent time frames miqes that are required along the three principal axes to register

be consistent with the total motion between distant tinf&Ch of the volumes to the reference respiratory time frame.
frames, the total transformation matrices can be viewed as aAffine registration parameters were obtained from the

cascade of incremental transforms: data of ten subjects describing the transformation with re-
i1 spect to a reference frame for all respiratory gates. A sum-

Mo =Moo M M = |'| M i mary of.resglts'for the transformat!on betwegn the reference

1=0 (at end-inspiration) and the most distant respiratory frame (at

Assuming constant velocity between frameéand—expiration) is seen in Table 1. Here are seen the required

M. =M __, .. Therefore, if we already have estimates Lanslqtlo.n for a pomt in th.e center of the registered volume,
el 7] the principal extension rauoz{Ax,Ay,Az), and the compres-

the total transformation matrices for time framesdj-1, a . L : .
prediction transformation for franjel can be obtained by slon factor., which is the prodyct of 'gh.e three extension ratios.
_ For an object that moves with a rigid-body motion, all the
Mo =Mos .MM =My ;M extension ratios and therefore the compression factor are
) ) equal to 1.0. Viewing the numbers in the table, it can be seen
where the incremental transformation matr,_, ;, can be that extension ratios of over 5% are typical, and the exten-
obtained by sion along the superior-inferior directiom) is usually

largest. Conceivably, this could be explained by the down-
ward pulling motion of the diaphragm during inspiration,
which would tend to stretch the heart from its end-expiration
shape.
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The translations and compression factors necessaryrdatio would result in a heart image that was 4-5 mm too small
register each gate to the reference at end-inspiration for iheegistered using a rigid-body constraint.
ten subjects are show_n in Figure 1 and Figure 2 respectively. \nhen compared to the average 5-10 mm thickness of the
Itis seen that translations are often greater than 10 mm, aid\entricular wall, this scaling error may not be insignifi-
range from 1 mm to over 20 mm. Because of the COM 9@k This is demonstrated in Figure 3, which shows a trans-
ing scheme, the distances are approximately linearly relaigdse yiew of the ellipsoidal MCAT cardiac phantom [9] and
to the respiratory gate. Itis seen that the compression faciafcaieq version that has been stretched by 5%. If one were

is roughly proportional to the translation. The left ventriclg, .y 15 register these two using a rigid-body motion model,
size is largest at inspiration, and generally becomes smallgst registration error would be quite large.
y

at end-expiration. The compression factors here can be fair
large — close to 10% in some cases.

Translation vs. Gate
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Figure 3. Effect of 5% Scaling Difference on Heart Phantom.
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4 Figure 3 points to a worse case example. It shows the
maximal extent of misregistration between the most distant

2 - : )
respiratory gates for a case with 5% stretch. If we were to
0+ add these two volumes together without compensating for
1 2 3 4 5 6 7 8 the scaling difference, the resulting blur would be consider-
Respiratory Gate able. In reality though, a motion compensated composite

volume would not be composed of just the two extreme

gates, but also of the intermediate gates as well. Furthermore,
Figure 1. Translation Versus Respiratory Gate. Translations kghen imaged with a scanner like the ECAT HR, the peak
tween end-inspiration (gate 1) and end-expiration (gate 8) are tyisolution even in the absence of motion would be limited to
cally greater than one centimeter. 4.1 mm full width at half-maximum (FWHM) transaxially,

and 5.4 mm FWHM axially [10], so the additional blur due

Compression vs. Gate to scaling errors might not be so problematic.
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. . . Figure 4. Noisy MCAT Simulation. Noise-free cardiac phantom
Figure 2. Compression Versus Respiratory Gate. The compre_s?[% ) and noisy version (bottom) are used to test the ability of the
factor is roughly proportional to the translation. The left ventricl algorithm to accurately estimate affine motion parameters.

appears largest at end-inspiration (gate 1), and smallest at efitkee orthogonal views (transverse, coronal and sagittal) are shown
expiration (gate 8). of each version of the phantom.

C o - . . To investigate whether an affine motion model would
B. Implications of Non-Rigid Respiratory Motion produce noticeably improved motion compensated PET im-
Given a typical dimension of the left ventricle along thages on a realistic controlled dataset, a noisy version of the
inferior-superior direction of 80-100 mm, a 5% extensioMCAT phantom was generated. Starting with a baseline size
of the isolated MCAT cardiac phantom on a zero back-



Figure 5. Motion Compensation Comparison. Three orthogo
views of the motion compensated composite cardiac phantom ug
rigid body model (top), and using the affine model (bottom
Though the actual motion was non-rigid, and 4D affine model
able to estimate it accurately, little difference can be seen in
compensated noisy sums reconstructed at the same spatial re
tion of the ECAT HR scanner.

ground, the heart was translated by (1, 7, 13) mm and sca
by stretch factors of (1.05, 1.0, 0.95) in the (x, y, z) dire

tions respectively. Eight equally spaced volumes were crFigure 6. Motion Compensation Comparison on Human PET Data.

ated between these two extents. To produce a set of rec’”. direct sum of all respiratory gates without first registering pro-
duces a dataset with more blur (top). This is particularly noticeable

structions with noise Charac.tensucs similar to thF’Se S€€N i the coronal (middle) and sagittal (right) views of the heart. The
our human datasets, the eight volumes were first forwamqtion compensated sum using a rigid body motion model (middle)
projected to obtain a set of noise-free sinograms. Then, thiand 4D affine model (bottom) both have improved resolution when
sinograms where sampled using Poisson statistics and reccompared to the direct sum, however, little advantage can be seen
structed using filtered backprojection to produce noisy imagon this dataset by using the 4D affine model.

volumes as seen in Fl_gure 4. Recon.struclted.voxel size dels. Here, it is seen that even though the affine motion
2.0x2.0x3.1 mm and sinogram sampling bin size was set

same as the ECAT HR scanner to provide reconstructi n((njdel provided a more accurate registration of all the seven
i . . o P Yihslated and scaled volumes to the reference volume, there
with spatial resolution similar to the human datasets.

. is little discernable difference between the best rigid sum
The reconstructed image volumes were smoothed gigp images) and the best affine sum (bottom images) at this
segmented, and the 4D affine registrations were estimatedea®nstructed spatial resolution.

described previously for the human datasets. For compari-
son, the registrations were also done in two other ways: fi\%
by restricting the motion model to only rigid-body motionz‘g

It is therefore not surprising that similar results are seen
en comparing the motion compensation techniques on the
man datasets (Figure 6). The top image shows three or-
ogonal views through the uncompensated images, that is, a
imple sum of all gates without first registering the images to
the end-inspiration volume. The next two rows show the
Accuracy of the estimations was judged in two ways: firgésult of motion compensation. Even though the motion
by the average misregistration distance of seven points @ismpensated volumes appear to have less blur than the un-
persed throughout the volume, and second via a qualitati¢mpensated sum, there again is little discernable difference
method by comparing the motion compensated composiigtween the sum using the rigid-body motion model (mid-
image volumes. By the first criterion, the accuracy of aflie) and the one using the affine motion model (bottom).
three registration methods was quite good. The method re-
stricted to a rigid body model had an average error of 1.32
mm, the 3D affine method had an error of 0.88 mm, and the IV.  CONCLUDING REMARKS
4D affine method had an error of 0.78 mm. These results Results presented here can be viewed in two different
show that even with the amount of noise shown here, faifights. On one hand, we have shown that the heart does not
accurate registrations could be obtained, and that a 4D affidéve purely as a rigid body during the respiratory cycle, and
motion registration method resulted in the least error. In fagiat its motion can better be modeled by an affine motion
examination of the estimated scale factors for the affialowing global scale and skew. On the other hand, we have
models show that the algorithm was able to estimate the seslewn that use of the more accurate affine model to form a
factors almost exactly. composite sum of motion-compensated, registered respira-
The second criterion gives perhaps a more important fRTY gates results in only marginal improvement at the spatial
terpretation of these results. Figure 5 compares the result§&splution of a conventional whole body PET scanner.
motion compensation using the rigid and the affine motion

and second by allowing affine motions, but not using the
smoothing constraint while estimating the motions. The Ias
ter method is termed the 3D affine method.



Simulations using a mathematical cardiac phantom have [9]

demonstrated that even with very noisy data, accurate esti-
mations of affine motion are possible, and the addition of a
4D smoothness constraint makes the algorithm even more
robust. In the images acquired from ten subjects, which were

acquired during normal tidal breathing, the heart consistently [10]

appeared to compress during expiration. The compression
was typically largest along the superior/inferior axis, result-
ing in a size difference that was often greater than 5%. This
suggests that use of a rigid-body motion model to align the
two extreme gates of a respiratory-gated cardiac acquisition
could result in a registration error comparable to the dimen-
sion of the left ventricle wall. Therefore, even though only
marginal improvement of motion corrected images is seen in
datasets from today’s PET scanners, it is likely that as spatial
resolution improves, more accurate registration of respiratory
gates will assume greater importance.
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